
 
The mechanics of quantum cryptography in aspects of dichotomy, transgression and 
synaesthesia 
 

1. Introduction 

 

This paper wants to outline the relationship of quantum cryptography towards a 

contemporary concept of synaesthesia and the production of meaning on the side of the 

recipient. In order to describe this relationship, it is necessary to provide some information 

relevant to this subject.  

At first, there will be an introduction of the “Mathematical Theory of Communication” by 

Claude Shannon published in 1949, in order to show how information theory deals with the 

phenomenon of communication and that this model in particular is not only suitable to 

describe and explain the technical issues that are involved here, it also complies to the 

conditions of  spoken and written language. By establishing this more natural scientific 

interpretation of the term “communication” , it is now possible to describe the processes 

involved in cryptography, for which Shannon also provides a “communication theory of 

secrecy systems”.  

By knowing the basic conditions of cryptography, the text will then introduce quantum 

cryptography and will show why this form of cryptography is different from the traditional 

forms and why this particular technique of enciphering and deciphering messages that 

carry meaning may be able to contribute to an extension our understanding of 

communication and logic and our view towards nature. In quantum physics, it is only 

possible to give rules by formulating mathematical probabilities because our traditional 

concepts of logic and physics – in a Newtonian sense – do not apply here any longer. 

Although we may not be able to determine the nature and “logic” of quantum physics 

definitively by the methods that have been proven reliable in the past, we are able to 

encode information and meaning by quantum states that can only be measured through 

probabilities.  

Although Kant pointed out in his “Kritik der reinen Vernunft” that the “thing by itself” is 

not recognizable and only appears to us through our senses, it is  now possible to use this 

phenomena of the unrecognizable “thing as such” as a carrier of information, it gets 

augmented by synaesthesia and the production of meaning.  To describe it in Luhmannian 

terms, the synaesthesia has undergone a process of out-differentiation in domains that not 
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only are part of the nature as we perceive it, but to the underlying principle of nature that 

we are unable to perceive. 

In order to examine the relationship of nature in our perception opposed to the principles of 

nature a bit further, the text will also focus on Werner Heisenberg’s philosophical outlines 

towards quantum physics. After making it understandable that the classical logic is merely 

a special case of something called “quantum logic”, the text will reflect the reception of 

quantum theory of the physicists as well as in literary science. 

 

 

2. The mathematical theory of communication 

 

In his “mathematical theory of communication”, Claude Shannon refers to the word 

“communication” in a broad definition by which one mind may affect another and, to 

broaden the definition of the term a bit further, it could also include the procedures by 

means of which one mechanism affects another mechanism. In this initial outline are three 

levels of communication problems, whereas the focus of this chapter will be the first level 

of problems. The technical problem, described as Level A, deals with the accuracy of 

transference from sender to receiver in general, may it be a set of symbols as in written 

speech or a continuously varying signal as in the transmission of voice and music or a 

continuously varying two-dimensional pattern as in television. In a mathematical sense, 

written speech involves the transmission of a discrete set of symbols, voice and music 

involve the transmission of a continuous function of time, and television deals with the 

transmission of either many continuous functions of time or of one continuous function of 

time and two space coordinates. 

Shannon’s concept of a general communication system involves five main parts (Fig. 1). 

First, there is the information source which selects a message out of a set of possible 

messages. The transmitter then changes the message into a signal which is actually sent 

over the communications channel to the receiver, which can be described as a sort of 

inverse transmitter that is changing the transmitted signal back into a message and 

forwarding this message to the destination. In the process of this transmission, there are 

changes in the initial signal involved which were not intended by the information source. 

All of these changes in the transmitted signal are referred to as noise. 

Having established this communication system, it is now vital to be concerned with the 

measurement of information. Due to the technical nature of this theory, it is important to 
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point out that within this communication system, information is considered apart from its 

meaning, it is merely defined as a measure of the freedom of choice in selecting a message. 

The logarithm of the number of available choices is defined as a measurement of the 

amount of information. If there are only two choices, it is equal to the logarithm of two to 

the base two (log2 2 = 1) which results in one, so that this situation is characterized by 

information of unity. This particular unit of information is called a “bit”, which is a short 

form of “binary digit”. If there, for example, would be a situation where it would be 

possible to choose out of sixteen alternative messages, this situation is characterized by 

four bits of information (16 = 24; log2 16 = 4). 

If the information source gives out a sequence of choices from one set of elementary 

symbols, the sequence selected is responsible for the articulation of the message. The 

choice of successive symbols is governed by probabilities which depend upon preceding 

choices at any stage of the process. A system which produces a sequence of symbols as 

described is called a stochastic process and such a process in which the probabilities 

depend on previous events is called a Markoff process. The quantity which meets the 

natural requirements that are kept up for “information” is what is known in 

thermodynamics as entropy. In physics, the entropy associated with a situation serves a 

measurement of the degree of randomness in this situation and the tendency of systems to 

reduce their degree of organization. It is now possible to make statements about the degree 

of information of a communication source as in the case of physical systems. The more 

organized a system is and the less it is characterized by a large degree of randomness of 

choice, the lower the value of entropy or the value of information is. By calculating this 

entropy of a certain information source, it is possible to compare this to the maximum 

value the entropy could have, given the condition that the source continues to operate with 

the same symbols. The ratio of the actual to the maximum entropy is called the “relative 

entropy” of the source. This relative entropy is necessary to determine the amount of 

redundancy in a message, which is calculated by one minus the relative entropy. The 

redundancy refers to those parts of the message that could be deleted without losing the 

essential completeness of the message.  This structural part of the message is not 

determined by the free choice of the sender, but by the accepted statistical rules governing 

the use of the particular symbols. 

 

“It is most interesting to note that the redundancy of English is just about 50 per 

cent, so that half of the letters or words we choose in writing or speaking are under 
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our free choice and about half (although we are not ordinarily aware of it) are really 

controlled by the statistical structure of the language. Apart from more serious 

implications, which again we will postpone to our final discussion, it is interesting 

to note that a language must have at least 50 per cent of real freedom (or relative 

entropy) in the choice of letters if one is to be able to construct satisfactory 

crossword puzzles. If it has complete freedom, then every array of letters is a 

crossword puzzle. If it has only 20 per cent of freedom, then it would be impossible 

to construct crossword puzzles in such complexity and number as would make the 

game popular. Shannon has estimated that if the English language had only about 

30 per cent redundancy, then it would be possible to construct three-dimensional 

crossword puzzles.” 1

 

To give a mathematical expression of the measurement of information in similar to the 

behaviour of entropy, let us assume a set of n independent symbols or n independent 

messages, with the probabilities of choice like p1, p2, … pn , then the actual expression for 

the information is H= - [p1 log p1 + p2 log p2 + … + pn log pn] , or, to put it simpler,  

H = - ∑ pi log pi. H stands for the information, or the entropy, whereas ∑ indicates to sum 

all terms that may occur like the one given in the example, pi log pi. Let us now assume 

further that it is only possible to choose between two possible messages, with the 

probabilities p1 for the first and p2 = 1 – p1 for the second. Now H has its greatest value, 

which is 1, when the two messages are equally probable, when p1 = p2 = ½, or, as 

mentioned before, when one is completely free to choose between the two. Just as soon as 

one message gets more probable than another, the value of H  decreases. When one 

probability is unity and the other is zero, then H is zero as well. The latter case may also be 

described as certainty, because there is no other probable possibility than just one. If there 

is no uncertainty and no freedom of choice, then there is no information in the sense as 

described above. So, if all choices possess the same probability ,the more choices will exist 

and the larger H will be. 

Another matter that the mathematical theory of communication is concerned with is the 

capacity of a communication channel. This capacity is described by the amount of 

information it transmits and not by the number of symbols. If the source emits symbols that 

all have the same duration of time, each symbols represents s bits of information and the 

                                                 
1 Warren Weaver, Some Recent Contributions to the Mathematical Theory of Communication, pp. 13,  in: 
Claude E. Shannon, Warren Weaver, The Mathematical Theory of Communication  
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channel is able to transmit n symbols per second, then the capacity C of the channel is 

defined as ns bits per second, which serves as a unit for the amount of information. 

A further process which is important for the mathematical communication model is the 

process of coding. When the transmitter turns the initial message into a signal, it encodes 

the message, whereas the receiver decodes the signal in order to get the message again. In a 

noiseless channel that is transmitting discrete symbols and has the capacity of C  bits per 

second and is accepting signals from a source of information of H bits per second, it is now 

possible to formulate a theorem which states that ,given a proper coding procedure for the 

transmitter, it is possible to transmit symbols over the channel at an average rate of nearly 

C/H  but at the same time can never exceed C/H. Since the information associated with the 

process which generates signals or messages is determined by the statistical character of 

the process, the statistical nature of messages is entirely determined by the character of the 

source.    

While information is a measure of the freedom of choice in selecting a message, the greater 

this freedom of choice is, the greater is the uncertainty that the message selected can be 

defined as a particular one, as explained in the relationship of information, entropy and its 

probabilities. When it comes to noise, the received signal contains certain distortions or 

errors that may lead to the conclusion of an increased uncertainty due to the effects of 

noise, which may again lead to the irritating conclusion that noise could be regarded as 

something beneficial within the mathematical model of communication. In order to prevent 

this, it is vital to distinguish between desirable and undesirable forms of uncertainty. To 

obtain the useful information in the received signal, the spurious parts have to be 

subtracted. If, in a certain communication ensemble, it is known that a certain signal 

symbol has been received, a certain probability for each message symbol is assigned, 

relatively large for the symbol similar to the one received, and relatively small for all the 

others. By using this set of probabilities, it is now possible to calculate a “tentative 

entropy” value, which is the entropy of the message on the assumption of a definite known 

received signal or a symbol. It is further possible to calculate those tentative message 

entropies for each assumption that is similar to the one described, namely the signal 

symbol that is received, by calculating and averaging all of them and weighting each one in 

accordance with the probability of the signal symbol assumed in calculating it. Entropies 

that are calculated in this way when there are two sets of symbols to consider are called 

“relative entropies”. The particular entropy of the message relative to the signal as 
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described is also called equivocation. This equivocation measures the average uncertainty 

in the message when the signal is known. 

If H (x) is the entropy or the information of the source of messages, H (y) the entropy of 

information of the received signals, Hy (x) the equivocation and Hx (y) the uncertainty in 

the received signal which occurs due to noise, it’s not hard to prove that  

H (x) – Hy (x) = H (y) – Hx (y), the right side of this equation being the useful information 

which is transmitted despite the undesirable effects of noise. Under those circumstances, 

the capacity C of a noisy channel is defined to be the equal maximum rate, in bits per 

second, at which useful information, that is, the total uncertainty minus the “noisy” 

uncertainty, can be transmitted over the channel. If now this noisy channel has a capacity 

C, as described, and is accepting signals from an information source which has an entropy 

of H (x) bits per second, the entropy of the received signals being H (y) bits per second. If 

the capacity C  is equal to or larger than H (x) , the output signal of the source can be 

transmitted over the channel with as little error as desired. If the capacity C  is less than H 

(x), it is impossible to reduce the error frequency. After a signal is received, there will 

always remain some undesirable uncertainty, or noise, regardless of the efficiency of the 

coding process ,which will always be equal to or greater than H (x) – C. There is always at 

least one code that is able to reduce the noise down to a value which exceeds H (x) – C. 

The important aspect of those implementations is that the minimum of remaining noise 

cannot be reduced any further, no matter how sophisticated the coding process.  

 

“One practical consequence, pointed out by Shannon, should be noted. Since 

English is about 50 per cent redundant, it would be possible to save about one-half 

the time of ordinary telegraphy by a proper encoding process, provided one were 

going to transmit over a noiseless channel. When there is noise on a channel, 

however, there is some real advantage in not using a coding process that eliminates 

all of the redundancy.  For the remaining redundancy helps to combat the noise. 

This is very easy to see, for just because of the fact that the redundancy of English 

is high, one has, for example, little or no hesitation about correcting errors in 

spelling that have arisen during transmission.”2   

 

The mathematical theory of communication not only applies to messages formed out of 

concrete symbols, but also to continuous messages which have variations in their signal. 
                                                 
2 Warren Weaver, Some Recent Contributions to the Mathematical Theory of Communication, p. 22,  in: 
Claude E. Shannon, Warren Weaver, The Mathematical Theory of Communication 
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Those variations are considered as frequencies which should not be observed entirely but 

rather within a band of zero to a frequency of W cycles per second. Mathematically 

spoken, it is possible to specify a continuous signal with T seconds in duration and band-

limited in frequency to the range from zero to W, by stating 2TW numbers. Normally, it is 

only possible to characterize a continuous curve by stating a finite number of points 

through which the curve passes. Therefore, an infinite number of points would be required 

for complete information about the curve, but if simple harmonic constituents of a limited 

number of frequencies built up the curve, a finite number of parameters is all that is 

necessary.  Given the assumption of a maximum capacity C of a channel of frequency 

bandwidth W and the average power used in transmitting is P, the channel being exposed 

to a noise of power N, this noise is characterized as white thermal noise that is band limited 

in frequency and the amplitudes of those frequencies are subject to a normal, that is 

Gaussian, probability distribution, it is possible to transmit, by the best coding, binary 

digits by the rate of  

W log2
N

NP +   bits per second and have an arbitrarily low error frequency, which cannot 

be reduced any further once a definite minimum frequency of errors is calculated. 

Recapitulating all mentioned processes concerning the mathematical theory of 

communication, it is to say that the sheer generality of its scope and the fundamentality 

with which the occurring problems are treated were the main reasons that the theory was 

introduced in the broader context of this paper. The lack of a need to specify the symbols 

that are used  in a specific case and the profoundness of the relationships involved in a 

given communication process make it applicable to all forms of communication, especially 

when the relationship of a total of three forms of communication is considered, which are a 

message that is understandable to humans is being transformed into binary or 

computational language, then being encrypted by a specific process, that is to be 

introduced shortly, and finally being send to a receiver which reverses all the processes 

described. It may not seem surprising that Shannon also formulated a theory of 

cryptography which he considers a special form of coding that is to be introduced in the 

following chapter.  

Furthermore, the concept of information developed in this theory as a concept of entropy 

applies to the broader context of this particular approach, since it has been used to 

contribute to a reconciliation of the theories and the factions of the natural sciences and the 

humanities or the cultural sciences, as it was done by authors like Thomas Pynchon and 

theoreticians like Gilles Deleuze who also mention the importance of the second law of 
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thermodynamics which is concerned with entropy and could be regarded as an intersection 

between poststructuralist or post-modern thinking and chaos theory.  

 

 

 

3. Shannon’s theory of secrecy systems and methods of modern cryptology 

 

Shannon’s work on secrecy systems contains two main parts, theoretical secrecy and 

practical secrecy. In the first part Shannon applies the mathematical apparatus developed in 

his “theory of mathematical communication” to cryptography and defines random, pure, 

perfect and ideal types of cryptosystems. He shows that perfect security in information 

theoretic settings can only be obtained in extreme cases, for example, when the amount of 

the key is longer or equal to the amount of message symbols. A secrecy system is defined 

as a set of transformations T of the set of possible messages M into the set of possible 

cryptograms E. Each particular transformation Tk: M → E  of the set T  corresponds to 

enciphering with a particular key k. Transformations are supposed to work one on one, so 

that unique decryption is possible when the key is known (Fig. 2). The key source 

produces a key from among those which are possible in the specified system. This key is 

transmitted in a non-interceptable way to the receiving end. Then, the message source 

produces a message which is enciphered and the resulting cryptogram is send to the 

receiver, where the cryptogram and the key are combined in the decipherer to recover the 

message. It is possible to represent the enciphering and deciphering operations as e = f 

(m,k) and m = g (e,k), with m being the message, k the key, and e the enciphered message 

or the cryptogram. It is preferable to think of this not as a function of two variables but as a 

family of transformations, that is e = Tkm. At the receiving end, it must be possible to 

recover m by knowing e and k. Thus the transformation Tk  in the family must have unique 

inverses Tk
-1 such that TkTk

-1 = I , the identity transformation, thus the message can be 

defined as m = Tk
-1e. Such an inverse must exist uniquely for every e which can be 

obtained from a message m with key k. 

Assume that there are only a finite number of possible keys, each has an associated 

probability pi and there are a finite number of possible messages m1,m2,…,mn with 

associated “a priori” probabilities q1,q2,…,qn. The possible messages might be the possible 

sequences of English letters all of length N, and the associated “a priori” probabilities are 

the relative frequencies of occurrence of these sequences in normal English text. If the 
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enemy intercepts the cryptogram, he can calculate from it “a posteriori” probabilities of the 

different possible messages and keys which might have produced this cryptogram. Thus 

the “a posteriori” probabilities constitute knowledge of the key and message after the 

interception. 

In a pure system, the messages can be divided into a set of “residue classes” C1 , C2,…, Cs 

and the cryptograms into corresponding sets of residue classes C’1 , C’2,…, C’s with the 

following properties, that first, the message residue classes are mutually exclusive and 

collectively contain all possible messages. Similarly for the cryptogram residue classes. 

Second, enciphering any message in Ci with any key produces a cryptogram in C’i. 

Deciphering any cryptogram in C’I with any key leads to a message in Ci. Third, the 

number of messages ϕI in Ci is equal to the number of cryptograms in C’I and is a divisor 

of ⏐K⏐ the number of keys. Fourth, each message in Ci can be enciphered into each 

cryptogram in C’I by exactly ⏐K⏐/ϕI different keys and similarly for decipherment. 

A cryptosystem is called perfect if the “a posteriori” probability is equal to the “a priori” 

probability, namely Pe(m) = P (m) , with P being the probability of the decrypted message   

m and Pe being the probability of the encrypted message , whereas P (m) = 0 is a solution 

that has to be excluded since it is vital to demand equality between Pe(m) and P (m), 

independent of the values of P (m). Perfect systems in which the number of cryptograms, 

the number of messages and the number of keys are all equal are characterized by the 

properties that each m is connected to each e by exactly one possible conjunction and that 

all keys are equally likely. The one-time pad system, for example, first proposed by Gilber 

Vernam of AT&T in 1926, is such a perfect system. This algorithm requires the generation 

of many sets of matching encryption keys pads. Each pad consists of a number of random 

key characters. These key characters are chosen completely at random and are not 

generated by any kind of cryptographic key generator. Now, each party involved receives a 

matching sets of pads and each key character in this pad is used to encrypt only one plain 

text character, then the key character is never used again. Any violation of these conditions 

negates the perfect security available in the one-time pad. 

The standard for cryptography that is used today is called RSA, after the developers Rivest, 

Shamir and Adleman, all three being researchers of the MIT Laboratory for Computer 

Science, who developed this system in April 1977. They looked for a procedure that could 

ensure two operations. First, the message source, which will be called Alice in the 

following, must create a public-key, which has to be published, so that the receiver, which 

will be called Bob, can use it to encrypt messages for Alice. Because the public-key serves 
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as a one-way function, it must be virtually impossible for anybody to reverse the Alice’s 

message. Second, Alice needs to have a private-key as well, which allows her to decrypt 

the messages being sent to her and to reverse the effect of the public key, but it is 

necessary that she alone possesses  the ability to decrypt any messages sent to her. 

Alice picks two giant prime numbers, p and q, which she must keep secret and multiplies 

them together to get another number, N. She now picks another random and most 

preferably prime number e. Alice can now publish e and N. Since these numbers are 

necessary for encryption, they must be available to anybody who might want to encrypt a 

message to her. Together, these numbers constitute the public-key. To encrypt a message, 

the message must be first converted into a number, M. For example, a word is changed into 

binary digits, and the binary digits can be considered as a decimal number. M is then 

encrypted to give the ciphertext C, according to the formula C=Me(mod N).3 To encrypt a 

message to Alice, Bob begins by looking up her public-key, namely N and e. This provides 

him with the encryption formula and allows him to send a ciphertext C to Alice. Since 

exponentials in modular arithmetic are one-way functions, it is very difficult to work 

backwards from C and recover the original message M. Hence, an enemy cryptanalyst, 

which will be called Eve, cannot decipher the message. However, Alice can decipher the 

message because she knows the values of p and q .She now calculates a special number d, 

the decryption key, otherwise known as her private-key. The number d is calculated 

according to the formula ed = 1 ( mod (p – 1 ) (q – 1)). To finally decrypt the message that 

was being sent, she uses the formula M = Cd ( mod N). The RSA cipher is used to protect 

the most important military, diplomatic, commercial and criminal communications today 

and is considered to be a cornerstone of modern encryption. The efficiency of RSA lies in 

the unreasonable amount of time a regular, and even powerful, computer would need to 

calculate, in Shannon’s terms, the exact “a posteriori” probabilities to break its encryption. 

The next chapter will illustrate how it could be possible, at least theoretically,  to break the 

RSA cipher in an acceptable amount of time and how this still theoretical problem is 

already solved.  

 

4. Quantum computing and quantum cryptography 

 

One thinkable approach of breaking an RSA cipher would be to check each prime number 

one at a time in order to find out if it divides into the number N .As mentioned before, the 
                                                 
3 mod stands for the mathematical operation modulo which is used to calculate the remainder of a whole-
numbered division. For example: 7 mod 3=1 , because 7:3=2, remainder 1. 

 10



sheer  amount of time required for those calculations would make the attempt impractical, 

since a ordinary computer can only process one arithmetic operation at a time. But the, still 

theoretical, concept of a quantum computer, which was first introduced by David Deutsch 

in 1985 and works with spinning particles as constituents of its binary code, could provide 

a solution.  A spinning particle has two spinning directions, east and west, and the binary 

code applies to those spinning directions. Having the same mathematical value as binary 

digits, a combination of seven particles, for example, can represent any number between 

zero and 127. The particle spins can be altered with pulses of energy and if this is done in a 

place that is out of a beholder’s view, quantum laws apply to those particles as they enter a 

state of superposition, a term that was first phrased by Erwin Schrödinger in his famous 

example of “Schrödinger’s cat” in 1935. With all particles being in a state of superposition, 

they have entered a value between the binary values of zero and one and effectively 

represent all possible combinations of eastward and westward spins and therefore, the 

quantum computer would be able to perform one calculation on all 128 numbers, according 

to the given example, simultaneously, whereas a common computer would need 128 single 

calculations on each number. 

 

“Quantum computing is Twilight Zone technology. […] When traditional 

computers operate on 1’s and 0’s, the 1’s and 0’s are called bits, which is short for 

binary digits. Because a quantum computer deals with 1’s and 0’s that are in 

quantum superposition, the are called quantum bits, or qubits […]. The advantage 

of qubits becomes even clearer when we consider more particles. With 250 

spinning particles, or 250 qubits, it is possible to represent roughly 1075 

combinations, which is greater than the number of atoms in the universe. If it were 

possible to achieve the appropriate superposition with 250 particles, then a quantum 

computer could perform 1075 simultaneous computations, computing them in just 

one second”4  

 

It should have become obvious that the concept of quantum computing could easily break 

the RSA cipher. Inevitably, the question arises in how far this potential security leak could 

be fixed. In contrast to the theory of quantum computing, which is still a purely theoretical 

idea, the concept of quantum cryptography is already being tested under practical 

                                                 
4 Simon Singh, The Code Book, p. 329 
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circumstances and the number of little technical improvements and new theoretical insights 

grow further each day.    

The phenomenon of quantum cryptography is to be located at the intersection of quantum 

mechanics and information theory and the inherent tension between those two categories is 

closely connected to the security of quantum cryptography. Quantum cryptography 

contributes to revaluate the negative viewpoint of quantum physics and its establishing of 

rules out that viewpoint. There are five basic rules concerning quantum mechanics, which 

are that first, it is impossible to take measurement without perturbing the system, second, it 

is not possible to determine simultaneously the position and the momentum of a particle 

with arbitrary high accuracy, third, it is impossible to simultaneously measure the 

polarization of a photon in the vertical-horizontal basis and simultaneously in the diagonal 

basis, fourth, it is not possible to draw pictures of individual quantum processes and fifth, it 

is impossible to duplicate an unknown quantum state. What is done in quantum 

cryptography is that Alice and Bob do not use the quantum channel to transmit 

information, they merely use it to transmit a random sequence of bits, or more precisely, 

qubits, which serves as the key, explained in the context of the RSA cipher, which is an 

asymmetrical cryptosystem or the one-time pad, which is a symmetrical one. As Shannon 

already pointed out, a symmetrical cryptosystem that has to be perfectly secure produces 

long sequences of key bits. A potential threat to its security is the distribution of the key to 

the receiving end. 

In terms of physics, the one-time pad can be regarded as “classical teleportation”. If Alice 

wants to make a copy of a classical system, merely a classical communication system that 

constitutes a message, for example a written text, her and Bob only have access to an 

insecure classical channel. If the secret key is arbitrarily long and they both have access to 

it over the channel, Alice is able to measure the state of the classical system with arbitrarily 

high accuracy and by using the one-time pad to securely communicate this information to 

Bob, who can then reconstruct the classical system in its initial state. Since the 

phenomenon of quantum teleportation has been discovered in 1993, it can be regarded as 

the quantum version of a one-time pad, or as the form of quantum cryptography, since the 

situation here is only slightly different. If Alice aims to transfer a copy of a quantum 

system to Bob, they both must have access to a quantum key, which is build of an 

arbitrarily high number of qubits. If  they share a classical communication channel as well, 

the quantum teleportation protocol provides them with a means transferring the quantum 

state of the system from the information source to the receiving end. If the initial quantum 
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system is a quantum message encoded in the form of a qubit sequence, it is possible to 

transfer this message without any security threats.  

Particles that could serve as qubits are photons which can be polarised by energy impulses. 

The polarisation of a photon is the oscillation level of its surrounding electric field. If the 

oscillation happens only in one level, the polarisation is called linear, whereas the 

polarisation is circular if the whole field is spinning. Every polarisation is constituted out 

of two components, if those two polarisation components are superimposed in the 

horizontal and vertical level and the superimposition is taking place with the same phase 

level, there will be a linear polarisation in a level of 45° and if the phase levels vary about 

90°, the outcome will be a circular polarisation. As mentioned before, it is only possible to 

measure the amplitudes of a polarised photon, namely horizontal or vertical, and it is not 

possible to simultaneously measure the phase level of the polarised components, due to 

Heisenberg’s uncertainty principle, whereby the initial polarisation of the photon is 

indeterminable. The first protocol for quantum cryptography exploiting this seeming 

disadvantage was the BB84 protocol, which was proposed in 1984 by Charles H. Bennet of 

IBM and Gilles Brassard of the University of Montreal.  In this protocol, Alice possesses a 

source which could emit single photons with one of four total possible polarisations, 

namely 0°, 90° and 45°, 135°, and both Alice and Bob have access to an additional public 

communication channel. It is important that Alice randomly chooses the mode of 

polarisation of a photon, whereas Bob tries to analyse the photon emitted by Alice with his 

polariser that has two exits, “+” and “-“, according to the orthogonal polarisation 

directions. Photons with a polarisation of 0° or 90° can only be measured with a polariser 

adjusted at 0°, similarly for photons polarised at 45° or 135°, which only can be measured 

with a polariser adjusted to 45°. Any measurement taken with an improper adjustment for 

the specific photons, for example measuring a polarised photon at 0° with a polariser 

adjusted to 45,° delivers totally random results that do not lead to any conclusions about 

the photon and its polarisation. Since Bob cannot know anything about the photons in the 

first place, he just has to switch between the two adjustments randomly and has a 

probability of fifty per cent to get the right adjustment for the right polarisation. He now 

notes the result of the measurement along with the polariser adjustment for every photon 

that is being sent to him. This particular procedure makes it impossible for any recipient, 

be it Bob or an enemy cryptanalyst Eve, to verify the correctness of the measurement 

taken. When every qubit is being sent, Bob tells Alice over the public channel which 

polariser adjustment he had taken for every photon, without telling her the result. Alice 
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now compares Bob’s adjustments with the actual polarisation of each photon and tells Bob 

which photons he had measured with the right adjustment. Out of those correct 

measurements, the quantum key is being built. For each 0° polarisation, a binary zero is 

allocated and for each 90° polarisation a binary one. Likewise for the 45° and the 135° 

polarisation. The verification of the quantum key is accomplished by an extraction of a 

sample from the gathered data that is compared by Alice and Bob. From this sample, the 

error rate is concluded. If Eve would attempt an attack with a beam-splitter, this would 

result in an incompleteness of the key, since photons or qubits cannot be separated or 

copied. If a qubit would be copied, the total information of one qubit would be divided into 

two qubits which would then possess an amount of information that would be less than one 

binary digit ,and therefore, they would not have the right quantum condition. An attempt to 

eavesdrop all photons and afterwards sending them to Bob would result in an error rate of 

twenty five per cent, because Eve has, like Bob, a probability of fifty per cent to measure 

the incoming photons correctly. If Bob would do a new measurement with the photons 

being sent to him by Eve, twenty five per cent of the results would be wrong, which would 

be above the predefined error rate of fourteen per cent. 

Quantum cryptography in its practical realisation demands two major criteria. First, it has 

to be assured, that only one photon is emitted from the information source and second, the 

initial polarisations have to be chosen by perfect coincidence. In order to achieve that, 

physicists nowadays work with entangled photon pairs which are characterized by a 

correlation in polarisation, no matter how large the distance between them is. Because of 

this, it is also called “non-locality”. This phenomenon was first described in 1935 by 

Albert Einstein, Boris Podolsky and Nathan Rosen in a theoretical outline, known as the 

EPR experiment. It hasn’t been carried into execution for almost thirty years, but as John 

Bell formulated his inequality in 1964, quantum physics finally found possibilities to test 

the phenomenon of non-locality in entangled photon pairs in praxis. If entangled photon 

pairs are measured by two opposite polarisers with the same angle adjustments, they 

always measure opposite results which is called anti-correlation. If, for example, Alice and 

Bob have adjusted their polarisers at 0°, one of them will measure a “-“ polarisation 

whereas the other will measure a “+” polarisation. The combinations of those 

measurements, that is, which will occur first, “-“ or “+”, are perfectly random and cannot 

be conducted or predicted. If their polarisers differ in their angle adjustments, the anti-

correlation decreases up to a difference of 45° between them. From this point on, they get 

total independent results, which means that even combinations of “-/-“ and “+/+” results 
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occur in equal randomness and frequency. A quantum key with entangled photon pairs is 

generated by Eve and Bob if they measure all incoming photons by randomly switching 

between the 0° and 45° positions on the polarisers and keeping the results secret at first. 

Over the public channel, they search for all measurements that were taken with the same 

polariser adjustments for which they get perfect complementary sequences. Those 

sequences are finally transformed into a quantum key. 

 

“Quantum cryptography is a fascinating illustration of the dialog between basic and 

applied physics. It is based on a beautiful combination of concepts from quantum 

physics and information theory and made possible by the tremendous progress in 

quantum optics and the technology of optical fibers and free-space optical 

communication. Its security principle relies on deep theorems in classical 

information theory and on a profound understanding of Heisenberg’s uncertainty 

principle […].”5     

 

Having explained the mechanics of quantum physics and information theory in 

mathematical detail, it now seems necessary to focus on the philosophical aspects of those 

concepts. Within this effort, it is noteworthy that Werner Heisenberg, although being a 

physicist in the first place, has also made several publications concerning the ontological 

and epistemological aspects of quantum physics, which try to point out the relevance of 

quantum theory in relation to our basic understanding of reality and the laws that we regard 

as applicable to it.  

 

5. Werner Heisenberg and the philosophical value of uncertainty 

 

In his work “Physics and Philosophy” which was first published in 1958, Heisenberg tries 

to reflect upon the various aspects concerning the importance of modern physics in relation 

to the current modes of the perception of reality, which include matters like language and 

reality in relation to modern physics as well as the history of quantum theory or the 

development of philosophical ideas in comparison to the new circumstances within 

quantum theory. 

This paper will only focus on some of his ideas, which could be regarded relevant to 

outline the historical methods and processes of natural science and how this understanding 
                                                 
5 N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Reviews of Modern Physics, 
Volume 74, January 2002  
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has changed during the course of the twentieth century, resulting in such interdisciplinary 

techniques as quantum cryptography. Renè Descartes, the famous French philosopher of 

the seventeenth century, who was concerned with a formation of a consistent natural 

science on a mathematical basis, recognized that the knowledge about our own thinking 

could be regarded as more reliable than our thinking about the outer world. In contrast to 

Greek philosophy, which was always concerned of establishing an order within the  infinite 

variety of things and apparitions by searching for one main principle, Descartes proposed 

to find order throughout a basic division into the “res cogitnas” and the “res extensa”, that 

is, the intellectual and the extended. Whereas the intellectual is taking place only in a 

human mind, the extended applies to all forms of matter that does not possess intellect. 

This dichotomy was quite efficient in the natural sciences for several centuries because it 

created the possibility of describing the world without the necessity of making statements 

about ourselves or god. Natural science doesn’t try to describe nature by itself but more 

nature as it is exposed to our methods and questions. Since the development of quantum 

physics, the philosophical thesis of all cognition being based on experience or, more 

precisely empiricism, has been proven insufficient. In relation to the kind of knowledge 

gained in the field of quantum theory, it seems that it is not possible to determine the limits 

of practicability of certain terms in accordance to the expansion of our knowledge. All 

terms that have been built out of the relationship between the world and ourselves are 

blurry defined in respect of their meaning. They can be used in various fields of our inner 

and outer experience but we cannot definitively know where the limits of their 

applicability, for example, terms like time and space. What is indeed precise is the 

definition of their conjunctions to other terms when they are part of a system of axioms and 

definitions that could be transferred into a mathematical system without any contradiction 

as it has been done in classic information theory where the term “information” is made 

equal to the term “entropy” and thus, it is then possible to define “information” within 

mathematical theorems and calculations. As those terms, assigned to different scientific 

categories in the first place, build a new category by their redefined meanings that have 

been proven efficient by mathematical calculations, they are now applicable to an even 

broader field of empiricism, what allows us to map this empiric field by our logical 

methods, as it was done in information theory, although the limits of applicability in a 

newly mapped empiric field still remain not clearly defined. That information theory 

would have the ability to establish something like quantum cryptography could not be 

known by the originators, but it was the uncertainty of applicability that has been redefined 
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over and over in the course of their development in both fields, quantum physics and 

information theory,  that finally allowed the possibility to combine specific elements of 

each scientific field into a new one called quantum cryptography. 

Within the process of expansion of scientific knowledge, the language that is used to 

reflect, store and distribute this knowledge expands as well. This process either results in 

introducing new terms for specific circumstances or in redefining terms that are already 

known apart from their common usage. One of the basic problems of quantum physics was 

the lack of a language that would allow to discuss the given situations without any form of 

contradiction. Common language relied upon the traditional terms of time and space which 

constituted the means of non-ambiguous communication about the arrangement and the 

results of measurements, whereas simultaneously the conducted experiments allowed the 

conclusion, that those classical terms weren’t able to apply to all given circumstances.  Due 

to this uncertainty that occurs by the usage of a common language, there have been efforts 

to define a precise language that allows logical well-defined logical conclusions that apply 

to the mathematical pattern of quantum theory. One of those attempts was made by 

physicist and philosopher Carl Friedrich von Weizsäcker, which concluded in the 

assumption that the mathematical pattern of quantum theory can be interpreted as an 

extension or modification of classical logic. One basic assumption of classical logic, that 

either a predication or its negation have to be true for the predication to make sense and 

that the rule of “tertium non datur” has to apply to it. In quantum logic, the prevalence of 

“tertium non datur” is reduced, again, “Schrödinger’s cat” with its superposition would be 

a good counterexample to this rule of classical logic. In order for language to apply to 

those seemingly uncommon circumstances, von Weizsäcker proposes different levels of 

language. The first level deals with objects, the second level is related to predications about 

those objects and the third level refers to predications about predications of objects and so 

on. This would allow the possibility to establish various methods of logical conclusions in 

the different levels of language, but sooner or later, the need for the common language and 

the classical logic will reoccur. Weizsäcker refers to the relationship of classical and 

quantum logic as an “a priori” relationship, which means that classical logic is similarly “a 

priori” to quantum logic as classical physics is to quantum physics.  Classical logic would 

be included in quantum logic as a kind of borderline case, whereas the latter would 

represent the more general pattern. 

In order to talk about circumstances that are connected with an interference of 

probabilities, as in superposition or measurement of emitted single photons, Weizsäcker 
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introduced logical values to predications about the given circumstances. For every 

predication that could be considered true, the logical value accounts one and for every false 

predication, the value is zero. It is important to note that values between those zero and one 

are possible and because of this, the meaning of the term “predication” is extended to a 

form of statement of mere tendencies where intersections of coexistent possibilities could 

be expressed in logical values in contrast to complementary statements that only accept 

values that are either zero or one.  

 

“In den Experimenten über Atomvorgänge haben wir mit Dingen und Tatsachen zu 

tun, mit Erscheinungen, die ebenso wichtig sind die irgendwelche Erscheinungen 

im richtigen Leben.  Aber die Atome oder die Elementarteilchen sind nicht ebenso 

wirklich. Sie bilden eher eine Welt von Tendenzen oder Möglichkeiten als eine von 

Dingen und Tatsachen.“6  

 

It still seems noteworthy that exactly this „interference of probabilities“ makes quantum 

cryptography so secure towards cryptanalysts. By being able to measure only one 

condition of the incoming photon, be it the vertical-horizontal or the diagonal polarisation, 

and the additional quantum laws , like impossibility of duplication or perturbation of the 

system through measurement, a set of interfering probabilities is established that only 

allows the designated receiver to decode those probabilities into “useful”, or static,  

information if he gets additional data from the sender. The mathematical obstacle in 

cryptanalysis of reversing a logarithmic process without knowing the initial values is 

extended by an ensemble of interfering probabilities of quantum physics where the attempt 

of reversing a quantum process without having access to data about the initial condition 

would result in a recognizable discrepancy among the official information source and the 

receiver.        

 

    

 

6. The relationship of dichotomy, transgression and synaesthesia in quantum  

     cryptography  

 

                                                 
6 Werner Heisenberg, Physik und Philosophie, p. 156 
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By having outlined the history and development of the processes that finally led to 

quantum cryptography, this last chapter tries to focus on quantum cryptography as an 

intermedial concept. According to McLuhan’s principle that the content of a medium is 

always another medium or a network of media, this also applies to quantum cryptography. 

Furthermore, it should be shown how the initial scientific concept of dichotomy is 

transgressed beyond its boundaries to a concept of synaesthesia that allows the recipient to 

produce a meaning by recognizing the transferred signal. 

Heisenberg in his comment on Descartes pointed out that the division of inner and outer 

processes, that is, the “res extensa”  and the “res cogitans”, paved the way for the natural 

sciences we know today. This concept can be considered as dichotomizing or binary since 

it followed the rules of classical logic with its “tertium non datur”. It helped to extend the 

amount of knowledge about the world or, more precisely, about establishing methods to 

perceive and predict phenomena within the world. Along with this extension of knowledge 

also came empiricism in order to verify the methods of scientific perception and prediction. 

If experiments cannot be conducted under the same circumstances over and over again, the 

result of thesis originating from that experiment would not be called scientific. Empiricism 

was the underlying principle of modelling and redesigning scientific methods until they 

applied to the current level of awareness. But since quantum theory and relativity theory 

were introduced, this understanding of empiricism changed. The binary principle itself was 

reformulated to a principle of tendencies and probabilities like the uncertainty principle. 

This secularisation of empiricism for the benefit of new insights into the very basic 

mechanisms of nature led to an interdisciplinary reflection of those changes in the literary 

field as well as it spawned an opposition towards this particular intertextual or 

interdiscoursive approach that still believes in the authority of empiricism in natural 

science as well as in our perception of nature by arguing that those theories concerning 

quantum mechanics are only aborning and literary critics cannot make any statements 

about their ontological conditions. Alan Sokal may serve as an example of the latter group. 

Nevertheless and apart from its ontological condition, quantum mechanics expanded again 

the applicability of its knowledge to quantum cryptography due to the non-locality 

principle and made it possible to use singular entangled photon pairs as an information 

channel. Again, it cannot be mentioned enough that exactly the uncertainty of the 

ontological condition of those photon pairs is the efficient underlying principle of the 

performance of this cryptography system. Here, cryptology is not used as a mathematic 

algorithm to encode the ontological “substance” of a message, but the “substance” by itself 
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is removed from all ontological attempts and mathematics and stochastic theory in 

particular are  the only connection to decode the complete ontological value of the message 

again.  

This process may be regarded as an indication that quantum mechanics finally gained 

synaesthetic aspects through quantum cryptography. In the common understanding of 

synaesthesia, meaning is produced by a combination of sensations. Scripture, for example, 

combines single letters that ate associated with single sounds to written words which again 

can be associated with spoken words which then denote a specific meaning in a specific 

language. In quantum cryptography, classical media like speech, text, and pictures are 

transformed into binary digits of discrete conditions of universal machines, that is, 

computers, which could then be encoded with a key that refers to specific quantum 

conditions of single entangled photon pairs. It still remains debatable if meaning which is 

encoded in quantum conditions can still be regarded as synaesthetic since we don’t have 

any organs to perceive them but it remains important that the meaning that is encoded by 

quantum conditions stays complete in the decoding process and by that, synaesthetic 

aspects make their entrance to quantum theory through its usage as a medium.  

 

“One has the vague feeling that information and meaning may prove to be 

something like a pair of canonically conjugate variables in quantum theory they 

being subject to some joint restriction that condemns a person to the sacrifice of the 

one as he insists on having much of the other.”7  

 

It remains to be seen if “quantum information technology” will have a similar impact on 

humanity as the already established mass-media television and radio, which also work with 

wave patterns as an information channel. By imagining the first people being exposed to 

something like a radio and wondering by which invisible channel the signal is being sent, 

one might also imagine the first people who use a quantum computer and wonder by which 

indeterminable processes this machine calculates its operations. 

 

 

 

 

 
                                                 
7 Warren Weaver, Some Recent Contributions to the Mathematical Theory of Communication, p. 28,  in: 
Claude E. Shannon, Warren Weaver, The Mathematical Theory of Communication 

 20



 

 

 

Appendix 
 
Figure 1: Schematic diagram of a general communication system 
 
 

 
 
Figure 2: Schematic of a general secrecy system 
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